

# Precision Formation Flying Integrated Analysis Tool (PFFIAT)

Bob Schwenk



### **PFFIAT Overview**

- Part of Internal Research and Development (IRAD) Program, initiated in Fiscal Year (FY) 2002
- GOAL: Tie together dynamics of satellite formations to interferometric and/or optical performance metrics





### Rationale

- PFFIAT enables productive and immediate first order assessment of mission concepts
- PFFIAT supports mission design for future Precision Formation Flying missions, including:
  - Stellar Imager (SI)
  - Micro-Arcsecond X-ray Imaging Mission (MAXIM)





### PFFIAT Concept





#### PFFIAT Team

- Code 571 Dr. Jesse Leitner
- Code 572 Dave Folta, Steven Hughes,
  Scott Sarin, Steven Cooley
- Code 583 Bob Schwenk
- Code 600 Dr. Keith Gendreau



### Target Customers and Missions

- Mission Designers
  - Model the virtual instrument
  - Design spacecraft trajectories
  - Evaluate control laws
  - Evaluate fuel usage
- Proof-of-Concept Demonstrations
  - LEONARDO (2008)
  - MAXIM Pathfinder (2012)
  - SPECS, MAXIM, SI (2016)



# PFFIAT Code Library Requirements

- Quickly generate user-modifiable scripts for use by analysts
- Provide a set of black-box applications
- Read and write standard files
- Provide plots for analysis and presentation
- Use MATLAB, including mex-files
- Read the Solar-Lunar-Planetary (SLP) ephemeris file

# PFFIAT Code Library Requirements

- Propagate N spacecraft given initial conditions
- Implement restricted three-body problems
- Allow choice of integrators (e.g., ODE113)
- Allow input and output in various coordinate and time systems
- Allow different integrators and force models for each spacecraft in the formation
- Implement various continuous-thrust control laws



### Architecture





### Development Environment

- Windows Platform
- MATLAB 6.5 (R13) with C and FORTRAN mex-files
- RCS Configuration Control



### Typical Implementation Cycle

#### • Analyst Provides:

- New scenario
- New control law
- New force models
- New plot requirements
- Performance requirements

#### • Developer Responds:

- New scenario scripts
- Implementation and testing of new code
- New official release delivered to analyst

Cycle requires anywhere from 1 week to 3 months



### Near-Term Applications

#### Types of Missions:

Multiple Spacecraft at a Lagrange Point Solar Sail-Craft Trajectories

### Typical Analyses:

**Evaluate Control Laws** 

Predict Fuel Usage

Optimize Transfer Trajectory



# Sun-Earth Lagrange Points





### Equipotential Lines in Rotating Coordinates





### Halo Orbit About L2











### Control Law





### Solar Sail-Craft









#### Comparing Transfer Trajectories in RLP Coordinates





### Defining the Initial-Value Problem

Y = Positions and Velocities of Spacecraft

$$Y' = F(t, Y)$$

$$F = F_{gravity} + F_{env} + F_{control}$$

$$Y(t_0) = Y_0$$

$$Y(t_0...t_f) = Solver(F, [t_0...t_f], Y_0, Options)$$





#### **Environmental Forces**



$$\overrightarrow{a} = \overrightarrow{a}_{ref} - 2\Delta \overrightarrow{v}_{err} / \tau - 2\Delta \overrightarrow{r}_{err} / \tau^2$$

Control Force



#### Status

- 190K lines of code in configured library
- Demonstrated rapid implementation of new scenarios
- Implemented scripts to help users generate mex files
- Prepared PFFIAT Software Overview (version 1)



### Major Challenge: Slow Execution!

#### CAUSES:

- Many spacecraft
- Expensive to compute the derivative
- High accuracy (10<sup>-12</sup>)
- Long time span (6 months to 1 year!)



### Speeding Up Execution

- Choose the best solver (e.g., ODE113)
- Avoid "stiff" control laws
- Use PROFILE to identify "time hogs"
- MCC Convert to C and compile
- Re-code in C or FORTRAN





### Expected Future Work

- New Scenarios
  - Solar sail-craft transfer trajectory
  - Multiple spacecraft arrayed near L2
- New Control Laws
- New Environmental Models
  - Solar radiation
  - Air density and wind speed